Internet-Draft ACVP KAS ECC August 2020
Fussell & Hammett Expires 11 February 2021 [Page]
Workgroup:
Network Working Group
Internet-Draft:
:
Published:
Intended Status:
Informational
Expires:
Authors:
B. Fussell, Ed.
R. Hammett, Ed.

ACVP KAS ECC JSON Specification

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 February 2021.

Table of Contents

1. Acknowledgements

There are no acknowledgements.

2. Abstract

This document defines the JSON schema for testing SP800-56a KAS ECC implementations with the ACVP specification.

3. Introduction

The Automated Crypto Validation Protocol (ACVP) defines a mechanism to automatically verify the cryptographic implementation of a software or hardware crypto module. The ACVP specification defines how a crypto module communicates with an ACVP server, including crypto capabilities negotiation, session management, authentication, vector processing and more. The ACVP specification does not define algorithm specific JSON constructs for performing the crypto validation. A series of ACVP sub-specifications define the constructs for testing individual crypto algorithms. Each sub-specification addresses a specific class of crypto algorithms. This sub-specification defines the JSON constructs for testing SP800-56a KAS ECC implementations using ACVP.

4. Terms and definitions

No terms and definitions are listed in this document.

5. Supported KAS-ECCs

The following key derivation functions MAY be advertised by the ACVP compliant cryptographic module:

6. Test Types and Test Coverage

The ACVP server performs a set of tests on the KAS protocol in order to assess the correctness and robustness of the implementation. A typical ACVP validation session SHALL require multiple tests to be performed for every supported permutation of KAS capabilities. This section describes the design of the tests used to validate implementations of KAS algorithms.

6.1. Test Types

There are two test types for KAS testing:

  • "AFT" - Algorithm Function Test. In the AFT test mode, the IUT SHALL act as a party in the Key Agreement with the ACVP server. The server SHALL generate and provide all necessary information for the IUT to perform a successful key agreement; both the server and IUT MAY act as party U/V, as well as recipient/provider to key confirmation.

  • "VAL" - Validation Test. In the VAL test mode, The ACVP server MUST generate a complete (from both party U and party V's perspectives) key agreement, and expects the IUT to be able to determine if that agreement is valid. Various types of errors MUST be introduced in varying portions of the key agreement process (changed DKM, changed key, changed hash digest, etc), that the IUT MUST be able to detect and report on.

6.2. Test Coverage

The tests described in this document have the intention of ensuring an implementation is conformant to [SP800-56a].

6.2.1. KAS-ECC Requirements Covered

  • SP 800-56a - 4.1 Key Establishment Preparations. The ACVP server is responsible for generating domain parameters as per the IUT's capability registration.

  • SP 800-56a - 4.2 Key-Agreement Process. Both the ACVP server and IUT participate in the Key Agreement process. The server and IUT can both take the roles of party U/V, and as such the "performer" of steps depicted in "Figure 2: Key Agreement process" can vary.

  • SP 800-56a - 5.1 Cryptographic Hash Functions. All modes of performing KAS SHALL make use of a hash function. The hash function MAY be used for confirmation of a successfully generated shared secret Z (noKdfNoKc), or as a primitive within the KDF being tested (kdfNoKc and kdfKc).

  • SP 800-56a - 5.2 Message Authentication Code (MAC) Algorithm. A MAC is utilized for confirmation of success for kdfNoKc and kdfKc modes of KAS. Note - a MAC prerequisite is REQUIRED only for kdfKc, though is utilized for both kdfNoKc and kdfKc.

  • SP 800-56a - 5.4 Nonce. Nonces are made use of in various KAS schemes - both the ACVP server and IUT SHALL be expected to generate nonces.

  • SP 800-56a - 5.6 Domain Parameters. Domain Parameter Generation SHALL be performed solely from the ACVP server, with constraints from the IUTs capabilities registration. The same set of domain parameters SHALL generate all keypairs (party U/V, static/ephemeral) for a single test case.

  • SP 800-56a - 5.6 Key-Pair Generation. While Key-Pairs are used in each KAS scheme, the generation of said key-pairs is out of scope for KAS testing. Random tests from the VAL groups, MAY inject bad keypairs that the IUT MUST be able detect. These random tests are only present in groups given appropriate assurance functions see: Section 7.4

  • SP 800-56a - 4.3 DLC-based Key-Transport Process / 5.7 DLC Primitives. Depending on the scheme used, either Diffie Hellman or MQV SHALL be used to negotiate a shared secret of z. Testing and validation of such key exchanges is covered under their respective schemes.

  • SP 800-56a - 5.8 Key-Derivation Methods for Key-Agreement Schemes. All schemes/modes save noKdfNoKc (component) MUST make use of a KDF. KDF construction SHALL utilize Section 7.11.1 for its pattern.

  • SP 800-56a - 5.9 Key Confirmation. Most KAS schemes allow for a Key Confirmation process, the ACVP server and IUT MAY be Providers or Recipients of said confirmation. Additionally, key confirmation MAY be performed on one or both parties (depending on scheme).

  • SP 800-56a - 6 Key Agreement Schemes. All schemes specified in referenced document are supported for validation with the ACVP server.

6.2.2. KAS-ECC Requirements Not Covered

  • SP 800-56a - 4.1 Key Establishment Preparations. The ACVP server SHALL NOT make a distinction between IUT generated keys via a trusted third party and the IUT itself.

  • SP 800-56a - 5.3 Random Number Generation. The IUT MUST perform all random number generation with a validated random number generator. A DRBG is REQUIRED as a prerequisite to KAS, but SHALL NOT be in the scope testing assurances.

  • SP 800-56a - 5.4 Nonce. Nonce generation is utilized for several schemes. The various methods of generating a nonce described in section 5.5 MUST be used, however their generation SHALL NOT be in scope of KAS testing assurances.

  • SP 800-56a - 5.5.2 Assurances of Domain-Parameter Validity. The ACVP server SHALL generate all domain parameters, IUT validation of such parameters is SHALL NOT be in scope for KAS testing.

  • SP 800-56a - 5.5.3 Domain Parameter Management. Domain Parameter Management SHALL NOT be in scope for KAS testing.

  • SP 800-56a - 5.6 Key-Pair Generation. While Key-Pairs MUST be used in each KAS scheme, the generation, assurances, and management of said key-pairs SHALL NOT be in scope of KAS testing.

  • SP 800-56a - 5.8 Key-Derivation Methods for Key-Agreement Schemes. Two-step Key-Derivation (Extraction-then-Expansion) SHALL NOT be utilized in KAS testing.

  • SP 800-56a - 5.9 Key Confirmation. KMAC is referenced in 800-56a as being a valid MAC function; it however SHALL NOT (currently) be supported in KAS testing.

  • SP 800-56a - 5.7 Rationale for Selecting a Specific Scheme. It is expected that the IUT registers all schemes it supports in its capabilities registration. Selecting specific schemes from a KAS testing perspective SHALL NOT be in scope.

  • SP 800-56a - 8 Key Recovery. Key Recovery SHALL NOT be in scope of KAS testing.

7. Capabilities Registration

ACVP requires crypto modules to register their capabilities. This allows the crypto module to advertise support for specific algorithms, notifying the ACVP server which algorithms need test vectors generated for the validation process. This section describes the constructs for advertising support of KAS ECC algorithms to the ACVP server.

The algorithm capabilities MUST be advertised as JSON objects within the 'algorithms' value of the ACVP registration message. The 'algorithms' value is an array, where each array element is an individual JSON object defined in this section. The 'algorithms' value is part of the 'capability_exchange' element of the ACVP JSON registration message. See the ACVP specification [ACVP] for more details on the registration message.

7.1. Prerequisites

Each algorithm implementation MAY rely on other cryptographic primitives. For example, RSA Signature algorithms depend on an underlying hash function. Each of these underlying algorithm primitives must be validated, either separately or as part of the same submission. ACVP provides a mechanism for specifying the required prerequisites:

Prerequisites, if applicable, MUST be submitted in the registration as the prereqVals JSON property array inside each element of the algorithms array. Each element in the prereqVals array MUST contain the following properties

Table 1: Prerequisite Properties
JSON Property Description JSON Type
algorithm a prerequisite algorithm string
valValue algorithm validation number string

A "valValue" of "same" SHALL be used to indicate that the prerequisite is being met by a different algorithm in the capability exchange in the same registration.

An example description of prerequisites within a single algorithm capability exchange looks like this

"prereqVals":
[
  {
    "algorithm": "Alg1",
    "valValue": "Val-1234"
  },
  {
    "algorithm": "Alg2",
    "valValue": "same"
  }
]
Figure 1

7.2. Required Prerequisite Algorithms

Some algorithm implementations rely on other cryptographic primitives. For example, IKEv2 uses an underlying SHA algorithm. Each of these underlying algorithm primitives must be validated, either separately or as part of the same submission. ACVP provides a mechanism for specifying the required prerequisites:

Table 2: Required Prerequisite Algorithms JSON Values
JSON Value Description JSON type Valid Values Optional
algorithm a prerequisite algorithm value CCM, CMAC, DRBG, ECDSA, HMAC, SHA valValue
algorithm validation number value actual number or "same" prereqAlgVal prerequistie algorithm validation

KAS has conditional prerequisite algorithms, depending on the capabilities registered:

Table 3: Prerequisite requirement conditions
Prerequisite Algorithm Condition
DRBG Always REQUIRED
SHA Always REQUIRED
ECDSA ECDSA.PKV validation REQUIRED when IUT using assurance functions of "fullVal", "keyPairGen", or "keyRegen". ECDSA.KeyPair validation REQUIRED when IUT using assurances functions of "keyPairGen", or "keyRegen".
AES-CCM AES-CCM validation REQUIRED when IUT is performing KeyConfirmation (KC) and utilizing AES-CCM.
CMAC CMAC validation REQUIRED when IUT is performing KeyConfirmation (KC) and utilizing CMAC.
HMAC HMAC validation REQUIRED when IUT is performing KeyConfirmation (KC) and utilizing HMAC.

7.3. KAS ECC Algorithm Capabilities JSON Values

Each algorithm capability advertised is a self-contained JSON object using the following values.

Table 4: KAS ECC Capabilities JSON Values
JSON Value Description JSON type Valid Values Optional
algorithm The algorithm under test value KAS-ECC No
mode The algorithm mode. value Component Yes
revision The algorithm testing revision to use. value "1.0" No
prereqVals Prerequisite algorithm validations array of prereqAlgVal objects See Section 7.2 No
function Type of function supported array See Section 7.4 No
scheme Array of supported key agreement schemes each having their own capabilities object See Section 7.5.1 No

Note: Some optional values are required depending on the algorithm. Failure to provide these values will result in the ACVP server returning an error to the ACVP client during registration.

7.4. Supported KAS ECC Functions

The following function types MAY be advertised by the ACVP compliant crypto module:

  • dpGen - IUT can perform domain parameter generation (FFC only)

  • dpVal - IUT can perform domain parameter validation (FFC only)

  • keyPairGen - IUT can perform keypair generation.

  • fullVal - IUT can perform full public key validation ( [SP800-56a] section 5.6.2.3.1 / 5.6.2.3.3)

  • partialVal - IUT can perform partial public key validation ( [SP800-56a] section 5.6.2.3.2 / 5.6.2.3.4)

  • keyRegen - IUT can regenerate keys given a specific seed and domain parameter (pqg for FFC, curve for ECC)

7.5. KAS ECC Schemes

7.5.1. KAS ECC Scheme Capabilities JSON Values

All other scheme capabilities are advertised as a self-contained JSON object using the following values. Note that at least one of "noKdfNoKc", "kdfNoKc", or "kdfKc" *MUST* be supplied with the registration. See <<supported_scheme_values>> for allowed ECC scheme types.
Figure 2
Table 5: KAS ECC Capabilities JSON Values
JSON Value Description JSON type Valid Values Optional
kasRole Roles supported for key agreement array initiator and/or responder No
noKdfNoKc Indicates no KDF, no KC tests are to be generated. Note this is a COMPONENT mode only test. This property MUST only be used with "KAS-ECC" / "Component" object Section 7.6.1 Yes
kdfNoKc Indicates KDF, no KC tests are to be generated. Note this is a KAS-ECC only test. This mode MAY only be used for registrations with "KAS-ECC" (no mode) object Section 7.6.2 Yes
kdfKc Indicates KDF, KC tests are to be generated. Note this is a KAS-ECC only test. This mode MAY only be used for registrations with "KAS-ECC" (no mode) object Section 7.6.3 Yes

7.5.2. Supported KAS ECC Schemes

The following schemes MAY be advertised by the ACVP compliant crypto module:

  • ephemeralUnified - keyConfirmation not supported

  • fullMqv

  • fullUnified

  • onePassDh - Can only provide unilateral key confirmation party V to party U.

  • onePassMqv

  • onePassUnified

  • staticUnified

7.6. KAS ECC Modes

7.6.1. KAS ECC noKdfNoKc

Contains properties REQUIRED for "noKdfNoKc" registration.

Table 6: NoKdfNoKc Capabilities
JSON Value Description JSON type Valid Values Optional
parameterSet The parameterSet options for "noKdfNoKc" object Section 7.7.1 No

7.6.2. KAS ECC kdfNoKc

Contains properties REQUIRED for "kdfNoKc" registration.

Table 7: kdfNoKc Capabilities
JSON Value Description JSON type Valid Values Optional
kdfOption The kdf options for "kdfNoKc" object Section 7.11 No
parameterSet The parameterSet options for "kdfNoKc" object Section 7.7.1 No

7.6.3. KAS ECC kdfKc

Contains properties REQUIRED for "kdfKc" registration.

Table 8: kdfKc Capabilities
JSON Value Description JSON type Valid Values Optional
kdfOption The kdf options for "kdfNoKc" object Section 7.11 No
kcOption The kc options for "kdfNoKc" object Section 7.12 No
parameterSet The parameterSet options for "kdfNoKc" object Section 7.7.1 No

7.7. Parameter Sets

7.7.1. KAS ECC Parameter Set

Each parameter set advertised is a self-contained JSON object using the following values. Note that at least one parameter set ("eb", "ec", "ed", "ee") is REQUIRED.

Table 9: KAS ECC Parameter Set Capabilities JSON Values
JSON Value Description JSON type Valid Values Optional
eb The eb parameter set object See Section 7.7.2 Yes
ec The ec parameter set object See Section 7.7.2 Yes
ed The ed parameter set object See Section 7.7.2 Yes
ee The ee parameter set object See Section 7.7.2 Yes

7.7.2. KAS ECC Parameter Set Details

  • eb: Len n - 224-255, min Len h - 112, min hash len - 224, min keySize - 112, min macSize - 64

  • ec: Len n - 256-283, min Len h - 128, min hash len - 256, min keySize - 128, min macSize - 64

  • ed: Len n - 384-511, min Len h - 192, min hash len - 384, min keySize - 192, min macSize - 64

  • ee: Len n - 512+, min Len h - 256, min hash len - 512, min keySize - 256, min macSize - 64

"noKdfNoKc" REQUIRES "hashAlg"

"kdfNoKc" REQUIRES "hashAlg" and at least one valid MAC registration

"kdfKc" REQUIRES "hashAlg" and at least one valid MAC registration

Table 10: KAS ECC Parameter Set Details Capabilities JSON Values
JSON Value Description JSON type Valid Values Optional
curve The elliptic curve to use for key generation. value See Section 7.8 No
hashAlg The hash algorithms to use for KDF (and noKdfNoKc) array See Section 7.9 No
macOption The macOption(s) to use with "kdfNoKc" and/or "kdfKc" object See Section 7.10 Yes

7.8. Supported ECC Curves

The following ECC Curves MAY be advertised by the ACVP compliant crypto module:

Table 11: Supported Curves per parameter set.
Parameter Set Prime Koblitz Binary
eb P-224 K-233 B-233
ec P-256 K-283 B-283
ed P-384 K-409 B-409
ee P-521 K-571 B-571

7.9. Supported Hash Algorithm Methods

The following SHA methods MAY be advertised by the ACVP compliant crypto module:

  • SHA2-224

  • SHA2-256

  • SHA2-384

  • SHA2-512

7.10. Supported KAS ECC MAC Options

The following MAC options MAY be advertised for registration under a "kdfNoKc" and "kdfKc" kasMode:

  • AES-CCM

  • CMAC

  • HMAC-SHA2-224

  • HMAC-SHA2-256

  • HMAC-SHA2-384

  • HMAC-SHA2-512

Table 12: KAS ECC Mac Option Details
JSON Value Description JSON type Valid Values Optional
keyLen The supported keyLens for the selected MAC. Domain AES based MACs limited to 128, 192, 256. HashAlg based MACs mod 8. All keySizes minimum MUST conform to parameter set requirements See Section 7.7.2 . No
nonceLen The nonce len for use with AES-CCM mac value Input as bits, 56-104, odd byte values only (7-13). Additionally minimum MUST conform to parameter set requirements See Section 7.7.2 . Yes (required for AES-CCM)
macLen The mac len for use with mac value Input as bits, mod 8, minimum MUST conform to parameter set requirements See Section 7.7.2 , maximum SHALL NOT exceed block size.. Yes (required for AES-CCM)

7.11. Supported KAS ECC KDF Options

The following MAC options are available for registration under a "kdfNoKc" and "kdfKc" kasMode:

  • concatenation

Table 13: KAS ECC KDF Option Details
JSON Value Description JSON type Valid Values Optional
oiPattern The OI pattern to use for constructing OtherInformation. value See Section 7.11.1 . No

7.11.1. Other Information Construction

Some IUTs *MAY* require a specific pattern for the OtherInfo portion of the KDFs for KAS. An "oiPattern" is specified in the KDF registration to accommodate such requirements. Regardless of the oiPattern specified, the OI bitlength *MUST* be 240 for FFC, and 376 for ECC. The OI *SHALL* be padded with random bits (or the most significant bits utilized) when the specified OI pattern does not meet the bitlength requirement
Figure 3

Pattern candidates:

  • literal[123456789ABCDEF]

    • uses the specified hex within "[]". literal[123456789ABCDEF] substitutes "123456789ABCDEF" in place of the field

  • uPartyInfo

    • uPartyId { || ephemeralKey } { || ephemeralNonce } { || dkmNonce }

      • dkmNonce is provided by party u for static schemes

      • "optional" items such as ephemeralKey MUST be included when available for ACVP testing.

  • vPartyInfo { || ephemeralKey } { || ephemeralNonce }

    • vPartyId

      • "optional" items such as ephemeralKey MUST be included when available for ACVP testing.

  • counter

    • 32bit counter starting at "1" (0x00000001)

Example (Note that party U is the server in this case "434156536964", party V is the IUT "a1b2c3d4e5", using an ECC non-static scheme):

  • "concatenation" : "literal[123456789CAFECAFE]||uPartyInfo||vPartyInfo"

Evaluated as:

  • "123456789CAFECAFE434156536964a1b2c3d4e5b16c5f78ef56e8c14a561"

    • "b16c5f78ef56e8c14a561" are random bits applied to meet length requirements

7.12. Supported KAS ECC KC Options

The following KC options are available for registration under a "kdfKc" kasMode:

Table 14: KAS ECC KC Option Details Capabilities
JSON Value Description JSON type Valid Values Optional
kcRole The role(s) the IUT is to act as for KeyConfirmation. array provider/recipient No
kcType The type(s) the IUT is to act as for KeyConfirmation. array unilateral/bilateral No
nonceType The nonce type(s) the IUT is to use for KeyConfirmation. array randomNonce, timestamp, sequence, timestampSequence No

7.13. Example KAS ECC Capabilities JSON Object

The following is a example JSON object advertising support for KAS ECC.

{
        "algorithm": "KAS-ECC",
        "revision": "1.0",
        "prereqVals": [{
                        "algorithm": "ECDSA",
                        "valValue": "123456"
                },
                {
                        "algorithm": "DRBG",
                        "valValue": "123456"
                },
                {
                        "algorithm": "SHA",
                        "valValue": "123456"
                },
                {
                        "algorithm": "CCM",
                        "valValue": "123456"
                },
                {
                        "algorithm": "CMAC",
                        "valValue": "123456"
                },
                {
                        "algorithm": "HMAC",
                        "valValue": "123456"
                }
        ],
        "function": ["keyPairGen", "dpGen"],
        "scheme": {
                "ephemeralUnified": {
                        "kasRole": ["initiator", "responder"],
                        "kdfNoKc": {
                                "kdfOption": {
                                        "concatenation": "uPartyInfo||vPartyInfo",
                                        "ASN1": "uPartyInfo||vPartyInfo"
                                },
                                "parameterSet": {
                                        "ec": {
                                                "curve": "K-283",
                                                "hashAlg": ["SHA2-224", "SHA2-256"],
                                                "macOption": {
                                                        "AES-CCM": {
                                                                "keyLen": [128],
                                                                "nonceLen": 56,
                                                                "macLen": 64
                                                        }
                                                }
                                        }
                                }
                        }
                }
        }
}
Figure 4

7.14. Example KAS ECC Component Capabilities JSON Object

The following is a example JSON object advertising support for KAS ECC Component.

{
        "algorithm": "KAS-ECC",
        "mode": "Component",
        "revision": "1.0",
        "prereqVals": [{
                        "algorithm": "ECDSA",
                        "valValue": "123456"
                },
                {
                        "algorithm": "DRBG",
                        "valValue": "123456"
                },
                {
                        "algorithm": "SHA",
                        "valValue": "123456"
                },
                {
                        "algorithm": "CCM",
                        "valValue": "123456"
                },
                {
                        "algorithm": "CMAC",
                        "valValue": "123456"
                },
                {
                        "algorithm": "HMAC",
                        "valValue": "123456"
                }
        ],
        "function": ["keyPairGen", "dpGen"],
        "scheme": {
                "ephemeralUnified": {
                        "kasRole": ["initiator", "responder"],
                        "noKdfNoKc": {
                                "parameterSet": {
                                        "eb": {
                                                "curve": "P-224",
                                                "hashAlg": ["SHA2-224", "SHA2-256"]
                                        }
                                }
                        }
                }
        }
}
Figure 5

8. Generation requirements per party per scheme

The various schemes of KAS all have their own requirements as to keys and nonces per scheme, per party. The below table demonstrates those generation requirements:

Table 15: Required Party Generation Obligations
Scheme KasMode KasRole KeyConfirmationRole KeyConfirmationDirection StaticKeyPair EphemeralKeyPair EphemeralNonce DkmNonce
DhHybrid1 NoKdfNoKc InitiatorPartyU None None True True False False
DhHybrid1 NoKdfNoKc ResponderPartyV None None True True False False
DhHybrid1 KdfNoKc InitiatorPartyU None None True True False False
DhHybrid1 KdfNoKc ResponderPartyV None None True True False False
DhHybrid1 KdfKc InitiatorPartyU Provider Unilateral True True False False
DhHybrid1 KdfKc InitiatorPartyU Provider Bilateral True True False False
DhHybrid1 KdfKc InitiatorPartyU Recipient Unilateral True True False False
DhHybrid1 KdfKc InitiatorPartyU Recipient Bilateral True True False False
DhHybrid1 KdfKc ResponderPartyV Provider Unilateral True True False False
DhHybrid1 KdfKc ResponderPartyV Provider Bilateral True True False False
DhHybrid1 KdfKc ResponderPartyV Recipient Unilateral True True False False
DhHybrid1 KdfKc ResponderPartyV Recipient Bilateral True True False False
Mqv2 NoKdfNoKc InitiatorPartyU None None True True False False
Mqv2 NoKdfNoKc ResponderPartyV None None True True False False
Mqv2 KdfNoKc InitiatorPartyU None None True True False False
Mqv2 KdfNoKc ResponderPartyV None None True True False False
Mqv2 KdfKc InitiatorPartyU Provider Unilateral True True False False
Mqv2 KdfKc InitiatorPartyU Provider Bilateral True True False False
Mqv2 KdfKc InitiatorPartyU Recipient Unilateral True True False False
Mqv2 KdfKc InitiatorPartyU Recipient Bilateral True True False False
Mqv2 KdfKc ResponderPartyV Provider Unilateral True True False False
Mqv2 KdfKc ResponderPartyV Provider Bilateral True True False False
Mqv2 KdfKc ResponderPartyV Recipient Unilateral True True False False
Mqv2 KdfKc ResponderPartyV Recipient Bilateral True True False False
DhEphem NoKdfNoKc InitiatorPartyU None None False True False False
DhEphem NoKdfNoKc ResponderPartyV None None False True False False
DhEphem KdfNoKc InitiatorPartyU None None False True False False
DhEphem KdfNoKc ResponderPartyV None None False True False False
DhHybridOneFlow NoKdfNoKc InitiatorPartyU None None True True False False
DhHybridOneFlow NoKdfNoKc ResponderPartyV None None True False False False
DhHybridOneFlow KdfNoKc InitiatorPartyU None None True True False False
DhHybridOneFlow KdfNoKc ResponderPartyV None None True False False False
DhHybridOneFlow KdfKc InitiatorPartyU Provider Unilateral True True False False
DhHybridOneFlow KdfKc InitiatorPartyU Provider Bilateral True True False False
DhHybridOneFlow KdfKc InitiatorPartyU Recipient Unilateral True True False False
DhHybridOneFlow KdfKc InitiatorPartyU Recipient Bilateral True True False False
DhHybridOneFlow KdfKc ResponderPartyV Provider Unilateral True False False False
DhHybridOneFlow KdfKc ResponderPartyV Provider Bilateral True False True False
DhHybridOneFlow KdfKc ResponderPartyV Recipient Unilateral True False True False
DhHybridOneFlow KdfKc ResponderPartyV Recipient Bilateral True False True False
Mqv1 NoKdfNoKc InitiatorPartyU None None True True False False
Mqv1 NoKdfNoKc ResponderPartyV None None True False False False
Mqv1 KdfNoKc InitiatorPartyU None None True True False False
Mqv1 KdfNoKc ResponderPartyV None None True False False False
Mqv1 KdfKc InitiatorPartyU Provider Unilateral True True False False
Mqv1 KdfKc InitiatorPartyU Provider Bilateral True True False False
Mqv1 KdfKc InitiatorPartyU Recipient Unilateral True True False False
Mqv1 KdfKc InitiatorPartyU Recipient Bilateral True True False False
Mqv1 KdfKc ResponderPartyV Provider Unilateral True False False False
Mqv1 KdfKc ResponderPartyV Provider Bilateral True False True False
Mqv1 KdfKc ResponderPartyV Recipient Unilateral True False True False
Mqv1 KdfKc ResponderPartyV Recipient Bilateral True False True False
DhOneFlow NoKdfNoKc InitiatorPartyU None None False True False False
DhOneFlow NoKdfNoKc ResponderPartyV None None True False False False
DhOneFlow KdfNoKc InitiatorPartyU None None False True False False
DhOneFlow KdfNoKc ResponderPartyV None None True False False False
DhOneFlow KdfKc InitiatorPartyU Recipient Unilateral False True False False
DhOneFlow KdfKc ResponderPartyV Provider Unilateral True False False False
DhStatic NoKdfNoKc InitiatorPartyU None None True False False False
DhStatic NoKdfNoKc ResponderPartyV None None True False False False
DhStatic KdfNoKc InitiatorPartyU None None True False False True
DhStatic KdfNoKc ResponderPartyV None None True False False False
DhStatic KdfKc InitiatorPartyU Provider Unilateral True False False True
DhStatic KdfKc InitiatorPartyU Provider Bilateral True False False True
DhStatic KdfKc InitiatorPartyU Recipient Unilateral True False False True
DhStatic KdfKc InitiatorPartyU Recipient Bilateral True False False True
DhStatic KdfKc ResponderPartyV Provider Unilateral True False False False
DhStatic KdfKc ResponderPartyV Provider Bilateral True False True False
DhStatic KdfKc ResponderPartyV Recipient Unilateral True False True False
DhStatic KdfKc ResponderPartyV Recipient Bilateral True False True False

9. Test Vectors

The ACVP server provides test vectors to the ACVP client, which are then processed and returned to the ACVP server for validation. A typical ACVP validation test session would require multiple test vector sets to be downloaded and processed by the ACVP client. Each test vector set represents an individual algorithm defined during the capability exchange. This section describes the JSON schema for a test vector set used with SP800-56a KAS ECC algorithms.

The test vector set JSON schema is a multi-level hierarchy that contains meta data for the entire vector set as well as individual test vectors to be processed by the ACVP client. The following table describes the JSON elements at the top level of the hierarchy.

Table 16: Top Level Test Vector JSON Elements
JSON Values Description JSON Type
acvVersion Protocol version identifier string
vsId Unique numeric vector set identifier integer
algorithm Algorithm defined in the capability exchange string
mode Mode defined in the capability exchange string
revision Protocol test revision selected string
testGroups Array of test groups containing test data, see Section 9.1 array

An example of this would look like this

{
  "acvVersion": "version",
  "vsId": 1,
  "algorithm": "Alg1",
  "mode": "Mode1",
  "revision": "Revision1.0",
  "testGroups": [ ... ]
}
Figure 6

9.1. Test Groups JSON Schema

The testGroups element at the top level in the test vector JSON object is an array of test groups. Test vectors are grouped into similar test cases to reduce the amount of data transmitted in the vector set. For instance, all test vectors that use the same key size would be grouped together. The Test Group JSON object contains meta data that applies to all test vectors within the group. The following table describes the secure hash JSON elements of the Test Group JSON object.

The test group for KAS ECC is as follows:

Table 17: Vector Group JSON Object
JSON Value Description JSON type Optional
tgId Numeric identifier for the test group, unique across the entire vector set. value No
scheme The scheme for the test vectors. See Section 7.5.1 for possible values value No
testType The type of testCases expected within the group. AFT (Functional) tests produce test cases where the prompt file delivers only the needed public server information in which the IUT is expected to perform KAS. VAL (Validity) tests produce inputs/outputs from both server and IUT perspectives of a KAS negotiation. The expectation of the IUT on such tests is to determine if the KAS negotiation was successful or not. AFT, VAL No
kasRole The KAS role initiator, responder No
kasMode The KAS mode noKdfNoKc, kdfNoKc, kdfKc No
parmSet Parameter set value to use eb, ec, ed, ee No
hashAlg hashAlg values being used See Section 7.9 No
macType The MAC being used. REQUIRED for "kdfNoKc" and "kdfKc" modes. See Section 7.10 Yes
keyLen The key length of the MAC. REQUIRED for "kdfNoKc" and "kdfKc" modes. See Section 7.10 Yes
nonceAesCcmLen The nonce length of the MAC (applies only to AES-CCM). REQUIRED for "kdfNoKc" and "kdfKc" modes using a AES-CCM MAC. See Section 7.10 Yes
macLen The mac length. REQUIRED for "kdfNoKc" and "kdfKc" modes. See Section 7.10 Yes
kdfType The KDF being used. REQUIRED for "kdfNoKc" and "kdfKc" modes. concatenation, asn1 Yes
idServerLen The length of the server ID. REQUIRED for "kdfNoKc" and "kdfKc" modes. value Yes
idServer The server ID. REQUIRED for "kdfNoKc" and "kdfKc" modes. value Yes
idIutLen The length of the server ID. REQUIRED for "kdfNoKc" and "kdfKc" modes. Provided in response by IUT for AFT tests. value Yes
idIut The server ID. REQUIRED for "kdfNoKc" and "kdfKc" modes. Provided in response by IUT for AFT tests. value Yes
oiPattern The oiPattern used in the KDF. REQUIRED for "kdfNoKc" and "kdfKc" modes. See Section 7.11.1 Yes
kcRole Key confirmation roles supported. REQUIRED for "kdfKc" modes. provider, recipient Yes
kcType Key confirmation types supported. REQUIRED for "kdfKc" modes. unilateral and/or bilateral Yes
curve The curve useds for keypair generation value No
tests Array of individual test vector JSON objects, which are defined in Section 9.2 array No

9.2. Test Case JSON Schema

Each test group contains an array of one or more test cases. Each test case is a JSON object that represents a single test vector to be processed by the ACVP client. The following table describes the JSON elements for each test vector.

Table 18: Test Case JSON Object
JSON Value Description JSON type Optional
tcId Numeric identifier for the test case, unique across the entire vector set. value No
staticPublicServerX The ECDSA static public key X coordinate value Yes
staticPublicServerY The ECDSA static public key Y coordinate value Yes
ephemeralPublicServerX The ECDSA ephemeral public key X coordinate value Yes
ephemeralPublicServerY The ECDSA ephemeral public key Y coordinate value Yes
nonceEphemeralServer nonceEphemeralServer ONLY USED BY C(1,2) and C(0,2) schemes with KC. nonce to be used in the MacData field value Yes
nonceNoKc The 16 byte nonce concatenated to the "Standard Test Message". Used for No Key Confirmation tests only. value Yes
nonceDkm The nonce supplied by the initiator to be used in the OI field in the PartyUInfo field. value Yes
staticPrivateIut The IUT ECDSA static private key value Yes
staticPublicIutX The IUT ECDSA static public key X coordinate value Yes
staticPublicIutY The IUT ECDSA static public key Y coordinate value Yes
ephemeralPrivateIut The IUT ECDSA ephemeral private key value Yes
ephemeralPublicIutX The IUT ECDSA ephemeral public key X coordinate value Yes
ephemeralPublicIutY The IUT ECDSA ephemeral public key Y coordinate value Yes
oiLen Length of the OtherInfo field value Yes
oi OtherInfo field value Yes
dkm Derived Keying Material. value Yes
tagIut The tag (or MAC) GENERATED BY THE SERVER/IUT by using the DKM to MAC the Message with the specified method value Yes
nonceEphemeralIut nonceEphemeralIut ONLY USED BY C(1,2) and C(0,2) schemes with KC. nonce to be used in the MacData field value Yes
nonceDkmIut ONLY USED BY STATIC SCHEME. The nonce supplied by the initiator to be used in the OI field in the PartyUInfo field value Yes
nonceLenDkm ONLY USED BY STATIC SCHEME. The length of the nonce supplied by the initiator to be used in the OI field in the PartyUInfo field. value Yes
nonceEphemeralDkm ONLY USED BY C(1,2) and C(0,2) schemes with KC. nonce to be used in the MacData field value Yes
nonceEphemralDkmLen length of nonceEphemeralIut value. value Yes
nonceAesCcm Nonce used by the CCM function, if CCM is used to generate the Tag. value Yes
macData The message to be MAced. value Yes
A shared secret that is used to derive secret keying material using a key derivation function. value Yes
hashZServer The hashed shared secret, only provided in noKdfNoKc modes of operation. value Yes
hashZIut The hashed shared secret, only provided in noKdfNoKc modes of operation. value Yes
testPassed Pass Fail indicating if the IUT agrees with the Tag generated by the server. boolean Yes

9.3. Example Test Vectors JSON Object

The following is a example JSON object for KAS ECC test vectors sent from the ACVP server to the crypto module.

[{
                "acvVersion": "1.0"
        },
        {
                "vsId": 1564,
                "algorithm": "KAS-ECC",
                "revision": "1.0",
                "testGroups": [
                        {
                "tgId": 1,
                                "scheme": "ephemeralUnified",
                                "testType": "AFT",
                                "kasRole": "initiator",
                                "kasMode": "kdfNoKc",
                                "parmSet": "ec",
                                "hashAlg": "SHA2-256",
                                "macType": "AES-CCM",
                                "keyLen": 128,
                                "aesCcmNonceLen": 64,
                                "macLen": 128,
                                "kdfType": "asn1",
                                "idServerLen": 48,
                                "idServer": "434156536964",
                                "curve": "P-256",
                                "tests": [{
                                        "tcId": 151,
                                        "ephemeralPublicServerX": "CBC9AF2F0FCE0F06643D7524DCCA96C78564BA77196C5F5F65DC0A119409A1F3",
                                        "ephemeralPublicServerY": "B619EBE85F2EC5E0A9B542CC77539D698C96CA5D0BDFCA224787C30CF971E3F4",
                                        "nonceNoKc": "BBDF1A42C9405B58B8329D583C437331",
                                        "nonceAesCcm": "FF5B0FD5F295257B"
                                }]
                        },
                        {
                "tgId": 2,
                                "scheme": "ephemeralUnified",
                                "testType": "AFT",
                                "kasRole": "responder",
                                "kasMode": "kdfNoKc",
                                "parmSet": "eb",
                                "hashAlg": "SHA2-224",
                                "macType": "HMAC-SHA2-224",
                                "keyLen": 128,
                                "macLen": 128,
                                "kdfType": "asn1",
                                "idServerLen": 48,
                                "idServer": "434156536964",
                                "curve": "P-224",
                                "tests": [{
                                        "tcId": 161,
                                        "ephemeralPublicServerX": "FFAD4CDB4293F61C2A74566FD4323A03C6BB3F9D6526D8E0506B2186",
                                        "ephemeralPublicServerY": "0D614DAA05395A5FDF51BC769AEC355C9688ECEFCF2FE10E6DC1030E",
                                        "nonceNoKc": "BEAB1A2CB8406A7083105EC234603A80"
                                }]
                        },
                        {
                "tgId": 3,
                                "scheme": "ephemeralUnified",
                                "testType": "VAL",
                                "kasRole": "initiator",
                                "kasMode": "kdfNoKc",
                                "parmSet": "eb",
                                "hashAlg": "SHA2-224",
                                "macType": "HMAC-SHA2-224",
                                "keyLen": 128,
                                "macLen": 128,
                                "kdfType": "asn1",
                                "idServerLen": 48,
                                "idServer": "434156536964",
                                "idIutLen": 0,
                                "curve": "P-224",
                                "tests": [{
                                        "tcId": 181,
                                        "ephemeralPublicServerX": "D489605D37C4F555E50D8F010BEE3165B93F7C749263C4BF3E9A4808",
                                        "ephemeralPublicServerY": "23C8167ACFB24DC62D6747960330471B28DC646E04E593DBE6F8F1A4",
                                        "nonceNoKc": "6BBFEECEBBD5200C5FAE050526A77342",
                                        "ephemeralPrivateIut": "343936401C5F88E658E2C9C47C2EB48DDE10506684D8B55027C05A15",
                                        "ephemeralPublicIutX": "14AA2C1ECDC258FE8AD035E9A2872CD14466783F82F5F3F8D757133A",
                                        "ephemeralPublicIutY": "8DD3D48BF9115EA5AB7A479FB1DAB0A46BCD6B4D1A306D5CAC254EC1",
                                        "oiLen": 376,
                                        "otherInfo": "A1B2C3D4E5434156536964CAFECAFE2D822B413172BB3012AA986AFFAE95B46360E00AAD0D0548104C1F946389B97D",
                                        "tagIut": "5EEE5D912191984D89DF074B9A885411"
                                }]
                        },
                        {
                "tgId": 4,
                                "scheme": "ephemeralUnified",
                                "testType": "VAL",
                                "kasRole": "responder",
                                "kasMode": "kdfNoKc",
                                "parmSet": "eb",
                                "hashAlg": "SHA2-224",
                                "macType": "AES-CCM",
                                "keyLen": 128,
                                "aesCcmNonceLen": 64,
                                "macLen": 128,
                                "kdfType": "asn1",
                                "idServerLen": 48,
                                "idServer": "434156536964",
                                "idIutLen": 0,
                                "curve": "P-224",
                                "tests": [{
                                        "tcId": 231,
                                        "ephemeralPublicServerX": "A0457CF2F5D38B72FF1BF3A2CF4C7CE30F215B5E52A53C39193B1639",
                                        "ephemeralPublicServerY": "38CA7951888E462D6C5F4E46FA953FF231F43D5A4F3FEBAEEBF3D52B",
                                        "nonceNoKc": "A889762176F5F02F8C1E4BBC0C669805",
                                        "ephemeralPrivateIut": "5F76009454AE9158797467C297229569C6E2027D6AFC226A63489444",
                                        "ephemeralPublicIutX": "1060CEE336B183738952CF13760D542E2F3AA60124D560EFA10F392C",
                                        "ephemeralPublicIutY": "216EA3B35E630A1EA4A91C430E5B63306A83624F0FFD8ADFF63A380E",
                                        "oiLen": 376,
                                        "otherInfo": "454156536964A1B2C3D4E5CAFECAFE9EF1EA2DC20EE820E7562CDD4DBCD5FD8CD57DB1F54961D8B0C83342C09B7D72",
                                        "nonceAesCcm": "BD79B8A8D5559128",
                                        "tagIut": "5CC10EF2564B0CD23D746A47DB5B98A2"
                                }]
                        }
                ]
        }
]
Figure 7

9.4. Example Test Vectors Component JSON Object

The following is a example JSON object for KAS ECC Component test vectors sent from the ACVP server to the crypto module.

[{
                "acvVersion": "1.0"
        },
        {
                "vsId": 1565,
                "algorithm": "KAS-ECC",
                "mode": "Component",
                "revision": "1.0",
                "testGroups": [{
                "tgId": 1,
                                "scheme": "ephemeralUnified",
                                "testType": "AFT",
                                "kasRole": "initiator",
                                "kasMode": "noKdfNoKc",
                                "parmSet": "eb",
                                "hashAlg": "SHA2-224",
                                "curve": "P-224",
                                "tests": [{
                                        "tcId": 1,
                                        "ephemeralPublicServerX": "DACE4B35FD720DDD6B307777EBAFE53859C5FC2D330755B05B061CEB",
                                        "ephemeralPublicServerY": "195344DE0C79898C5C060BFACE1D24FDE1127ECF503EA04B08FFB9F1"
                                }]
                        }, {
                "tgId": 2,
                                "scheme": "ephemeralUnified",
                                "testType": "AFT",
                                "kasRole": "responder",
                                "kasMode": "noKdfNoKc",
                                "parmSet": "eb",
                                "hashAlg": "SHA2-224",
                                "curve": "P-224",
                                "tests": [{
                                        "tcId": 21,
                                        "ephemeralPublicServerX": "747EDBB8F62E1F06BD542FC2DD93169CB24DA6EF9E2FED4FE60FCBE6",
                                        "ephemeralPublicServerY": "C7FB2C3C9B95E70D908B9992C8018B785F7BCD3E5967E37EFB18A422"
                                }]
                        },
                        {
                "tgId": 3,
                                "scheme": "ephemeralUnified",
                                "testType": "VAL",
                                "kasRole": "initiator",
                                "kasMode": "noKdfNoKc",
                                "parmSet": "eb",
                                "hashAlg": "SHA2-224",
                                "curve": "P-224",
                                "tests": [{
                                        "tcId": 41,
                                        "ephemeralPublicServerX": "866BD81E951787AA1130CB67BA48E22F8A9E7EFF0713418B4FB8A31C",
                                        "ephemeralPublicServerY": "050C9E3DB4560313979FE465AC8624E93BC0D97E7C68AC589840BCF7",
                                        "ephemeralPrivateIut": "0C9AE6286544FED81921E6495B946C6AF39DF90EC68379CEF2F7C69D",
                                        "ephemeralPublicIutX": "CA296A5C86EC39C4EA626A8D9AB39DE5D5092FAA3AE2F241D7791497",
                                        "ephemeralPublicIutY": "F768358D14A428C61A3229FB4BB752F02ECC1F54763CA98655A8412C",
                                        "hashZIut": "FC6268A34B63B5A82AF03A6CABE61C69CC57317E5E8C8F508FCB82D0"
                                }]
                        },
                        {
                "tgId": 4,
                                "scheme": "ephemeralUnified",
                                "testType": "VAL",
                                "kasRole": "responder",
                                "kasMode": "noKdfNoKc",
                                "parmSet": "eb",
                                "hashAlg": "SHA2-224",
                                "curve": "P-224",
                                "tests": [{
                                        "tcId": 91,
                                        "ephemeralPublicServerX": "7A2EBA553C4DC0E4D7A19A3648BA9713496EB462B1B7D83D375F7FFD",
                                        "ephemeralPublicServerY": "5972BF3B114612AA5BBA14D0BE956DED03359F52ADDF0B9C2D0314E1",
                                        "ephemeralPrivateIut": "9AEDA69CE438C6F8592CE3B8E14E92BE9143E82B3EED42CF62E45BF7",
                                        "ephemeralPublicIutX": "941DAF3C527D2B76AA907F60C208F8987681972E466529CA8BD962FD",
                                        "ephemeralPublicIutY": "F381EC5DBEA7F6EA3A09D2D75372C014C3DE3ECABBBBC00DDFB97359",
                                        "hashZIut": "BB61FA1DCA5D93A6FBB43317AABCAE22A3EDF7F72216516115935D4E"
                                }]
                        }
                ]
        }
]
Figure 8

10. Test Vector Responses

After the ACVP client downloads and processes a vector set, it must send the response vectors back to the ACVP server. The following table describes the JSON object that represents a vector set response.

10.1. Vector Set Response JSON Object

Table 19: Vector Set Response JSON Object
JSON Value Description JSON type
acvVersion Protocol version identifier value
vsId Unique numeric identifier for the vector set value
testGroups Array of JSON objects that represent each test vector group. See Section 10.2 array

The testGroups section is used to organize the ACVP client response in a similar manner to how it receives vectors. Several algorithms SHALL require the client to send back group level properties in their response. This structure helps accommodate that.

10.2. Vector Set Group Response JSON Object

Table 20: Vector Set Group Response JSON Object
JSON Value Description JSON type
tgId The test group Id value
tests The tests associated to the group specified in tgId value

10.3. Example Test Results JSON Object

The following is a example JSON object for KAS ECC test results sent from the crypto module to the ACVP server.

[{
                "acvVersion": "1.0"
        },
        {
                "vsId": 1564,
                "testGroups": [{
                                "tgId": 1,
                                "tests": [{
                                        "tcId": 151,
                                        "nonceNoKc": "BBDF1A42C9405B58B8329D583C437331",
                                        "ephemeralPublicIutX": "F90FE5B7D5DA0F7849B0849D780143F4CC7E9F080465AA05DBD3E610D6B24763",
                                        "ephemeralPublicIutY": "1D746A8F960AE8425C63DE17618362F7040365D9168F21A0762526ECCC556084",
                                        "idIutLen": 40,
                                        "idIut": "A1B2C3D4E5",
                                        "oiLen": 376,
                                        "oi": "A1B2C3D4E5434156536964CAFECAFEA0988C0EB862E29CBFBD0B087D3223B9052811800B2D1ADF1D42AE73BAAD162A",
                                        "nonceAesCcm": "FF5B0FD5F295257B",
                                        "tagIut": "FF1ADCA06E582AD9E4A8B7FE3D7D9C28"
                                }]
                        },
                        {
                                "tgId": 2,
                                "tests": [{
                                        "tcId": 161,
                                        "nonceNoKc": "BEAB1A2CB8406A7083105EC234603A80",
                                        "ephemeralPublicIutX": "C5D934686BAB0E156D4F5CF1BDA7B044128C803E4C8AA2D9B0024FC0",
                                        "ephemeralPublicIutY": "E2D8973A51A9CE0FA7FAD8A444ECAB518C672C65313BEE4150CFD50E",
                                        "idIutLen": 40,
                                        "idIut": "A1B2C3D4E5",
                                        "oiLen": 376,
                                        "oi": "434156536964A1B2C3D4E5CAFECAFE9D9E4AB0A187C117158C9A234F4AEE8328714003BFED6C08A7F191E61DCA2B6A",
                                        "tagIut": "77587ED9D13B811F200214FD5E1F864A"
                                }]
                        },
                        {
                                "tgId": 3,
                                "tests": [{
                                        "tcId": 181,
                                        "testPassed": false
                                }]
                        },
                        {
                                "tgId": 4,
                                "tests": [{
                                        "tcId": 231,
                                        "testPassed": false
                                }]
                        }
                ]
        }
]
Figure 9

10.4. Example Test Results Component JSON Object

The following is a example JSON object for KAS ECC Component test results sent from the crypto module to the ACVP server.

[{
                "acvVersion": "1.0"
        },
        {
                "vsId": 1564,
                "testGroups": [{
                                "tgId": 1,
                                "tests": [{
                                        "tcId": 1,
                                        "ephemeralPublicIutX": "50471CE7F6FE2CAD6C901F85BF258E84571D3C88F59356B91DDBF286",
                                        "ephemeralPublicIutY": "5B8A7BC07BE15F28D34AA8324DEE93C715F569D3AF4820209F6452E7",
                                        "hashZIut": "96DCAF87127AB615896CCD0479C8BEAFD7EE111F384C962687D28ACC"
                                }]
                        },
                        {
                                "tgId": 2,
                                "tests": [{
                                        "tcId": 21,
                                        "ephemeralPublicIutX": "3E95CE4241A63C4ECBDC12CF2A3FB9E56222C0D395885CF0B51B04F7",
                                        "ephemeralPublicIutY": "F8865F76DE98CFCFBBAD2E99A317636F48AC874847E0A489C96631EC",
                                        "hashZIut": "3B7721F7514C09DD38D62E72E20D0375A7B3AC5BD837A7B860BC65FA"
                                }]
                        },
                        {
                                "tgId": 3,
                                "tests": [{
                                        "tcId": 41,
                                        "testPassed": false
                                }]
                        },
                        {
                                "tgId": 4,
                                "tests": [{
                                        "tcId": 91,
                                        "testPassed": true
                                }]
                        }
                ]
        }
]
Figure 10

11. ECC CDH Component Test

The ECC CDH Component Test

11.1. ECC CDH Component Capabilities JSON Values

Each algorithm capability advertised is a self-contained JSON object using the following values.

Table 21: KAS ECC Component Capabilities JSON Values
JSON Value Description JSON type Valid Values Optional
algorithm The algorithm under test value KAS-ECC No
mode The algorithm mode value CDH-Component No
revision The algorithm testing revision to use. value "1.0" No
prereqVals Prerequisite algorithm validations array of prereqAlgVal objects See Section 7.2 No
curve Array of supported curves array See Section 7.8 No

11.1.1. Example KAS ECC CDH-Component Capabilities JSON Object

The following is a example JSON object advertising support for KAS ECC CDH-Component.

{
        "algorithm": "KAS-ECC",
        "mode": "CDH-Component",
        "revision": "1.0",
        "prereqVals": [{
                "algorithm": "ECDSA",
                "valValue": "123456"
        }],
        "function": ["keyPairGen", "dpGen"],
        "curve": ["p-192", "k-163", "b-163"]
}
Figure 11

11.2. ECC CDH Component TestVectors JSON Values

Table 22: KAS ECC CDH Component TestVectors JSON Values
JSON Value Description JSON type Valid Values Optional
algorithm The algorithm under test value KAS-ECC No
mode The algorithm mode under test value CDH-Component No
revision The algorithm testing revision to use. value "1.0" No
testGroups Array of individual test group JSON objects, which are defined in Section 11.2.1 Array Array of test group information No

11.2.1. ECC CDH Component TestGroup JSON Values

Table 23: KAS ECC CDH Component TestGroup JSON Values
JSON Value Description JSON type Valid Values Optional
testType The test type expected within the group. AFT is the only valid value for ECC Component. value AFT No
curve The curve used in the test group value P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-283, B-409, B-571 No
tests Array of individual test vector JSON objects, which are defined in Section 11.2.2 array No

11.2.2. ECC CDH Component TestCase JSON Values

Table 24: KAS ECC CDH Component TestCase JSON Values
JSON Value Description Valid Values Optional
tcId Numeric identifier for the test case, unique across the entire vector set. value No
publicServerX The X coordinate of the server's public key value Yes
publicServerY The Y coordinate of the server's public key value Yes
publicIutX The X coordinate of the iut's public key value No
publicIutY The Y coordinate of the iut's public key value No
The shared secret Z value No

11.2.3. Example KAS ECC CDH-Component Test Vectors JSON Object

The following is a example JSON object for KAS ECC CDH-Component test vectors sent from the ACVP server to the crypto module.

[{
                "acvVersion": "1.0"
        },
        {
                "vsId": 1750,
                "algorithm": "KAS-ECC",
                "mode": "CDH-Component",
                "revision": "1.0",
                "testGroups": [{
                                "tgId": 1,
                                "testType": "AFT",
                                "curve": "p-192",
                                "tests": [{
                                        "tcId": 1,
                                        "publicServerX": "CAEF2CBA796BB7FC143D3EAED698C26AAE6F6F79DF3974EE",
                                        "publicServerY": "03ED6D7A90637629DBCEBFF4A2D1D771D9D4CF9F0D88CE90"
                                }]
                        },
                        {
                                "tgId": 2,
                                "testType": "AFT",
                                "curve": "k-163",
                                "tests": [{
                                        "tcId": 26,
                                        "publicServerX": "048C46D674E1218D0BD3C9FCD120ECE8B4DB7310E7",
                                        "publicServerY": "ED3EEDB656E035C779081090BE44B743E857E3B4"
                                }]
                        },
                        {
                                "tgId": 3,
                                "testType": "AFT",
                                "curve": "b-163",
                                "tests": [{
                                        "tcId": 51,
                                        "publicServerX": "8EE7C8F08BF47B21CA2FE911B721651B90E52391",
                                        "publicServerY": "0461DF3646E95598EAE4F5C6A634E71006ABC6FE1F"
                                }]
                        }
                ]
        }
]
Figure 12

11.3. KAS CDH-Component Test Vector Responses

After the ACVP client downloads and processes a vector set, it must send the response vectors back to the ACVP server. The following table describes the JSON object that represents a vector set response.

11.3.1. CDH Component Vector Set Response JSON Object

Table 25: CDH Component Vector Set Response JSON Object
JSON Value Description JSON type
acvVersion Protocol version identifier value
vsId Unique numeric identifier for the vector set value
testGroups Array of JSON objects that represent each test vector group. See Section 11.3.2 array

The testGroups section is used to organize the ACVP client response in a similar manner to how it receives vectors. Several algorithms SHALL require the client to send back group level properties in their response. This structure helps accommodate that.

11.3.2. CDH Component Vector Set Group Response JSON Object

Table 26: CDH Component Vector Set Group Response JSON Object
JSON Value Description JSON type
tgId The test group Id value tests

Each test group contains an array of one or more test cases. Each test case is a JSON object that represents a single test vector to be processed by the ACVP client. The following table describes the JSON elements for each DRBG test vector.

11.3.3. CDH Component Test Case Results JSON Object

Table 27: CDH Component Test Case Results JSON Object
JSON Value Description JSON type Optional
tcId Numeric identifier for the test case, unique across the entire vector set. value No
publicIutX x value of the IUT public key value No
publicIutY x value of the IUT public key value No
Computed shared secret Z value No

11.4. Example KAS ECC CDH Component Test Results JSON Object

The following is a example JSON object for KAS ECC CDH Component test results sent from the crypto module to the ACVP server.

[{
                "acvVersion": "1.0"
        },
        {
                "vsId": 1750,
                "testGroups": [{
                                "tgId": 1,
                                "tests": [{
                                        "tcId": 1,
                                        "publicIutX": "DB9FBC84CBAD3EED42C31CDBF2882041634D040219C3E47A",
                                        "publicIutY": "9BD672733BCCEF2BD805E97FF9BBFE0FFC003BEEEF56868B",
                                        "z": "8BEAEA60DFAC075F9F25A5CFEA39818D98D3EA4B9D4C34A8"
                                }]
                        },
                        {
                                "tgId": 2,
                                "tests": [{
                                        "tcId": 26,
                                        "publicIutX": "058C593D1D4E8238102BDE6B497218D92F8EDD2997",
                                        "publicIutY": "0437682E4608984EFC7FB619FB260EF27CAF704D7B",
                                        "z": "075D9A831E0665521D613AEAA59B8C8CDFBAC8C683"
                                }]
                        },
                        {
                                "tgId": 3,
                                "tests": [{
                                        "tcId": 51,
                                        "publicIutX": "04128CD094F6988AA26DA2B100A71A31214CC9C50B",
                                        "publicIutY": "01A3A88C9F0987E488922573D0A31D300532F0B268",
                                        "z": "07EC896621BF1703EB7567196ED1DE5742C4695990"
                                }]
                        }
                ]
        }
]
Figure 13

12. Security Considerations

There are no additional security considerations outside of those outlined in the ACVP document.

13. IANA Considerations

This document does not require any action by IANA.

14. Normative references

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", IETF RFC 2119, IETF RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
[RFC7991]
Hoffman, P., "The "xml2rfc" Version 3 Vocabulary", IETF RFC 7991, IETF RFC 7991, DOI 10.17487/RFC7991, , <https://www.rfc-editor.org/info/rfc7991>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", IETF RFC 8174, IETF RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/info/rfc8174>.
[ACVP]
Hammett, R., Fussell, B., Vassilev, A., and H. Booth, "Automatic Cryptographic Validation Protocol", .
[FIPS186-4]
NIST, "FIPS 186-4 Digital Signature Standard (DSS)", , <https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>.
[SP800-56a]
Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R. Davis, "SP800-56Ar3 Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography", , <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf>.

Authors' Addresses

Barry Fussell (editor)
Russell Hammett (editor)